Course information

- Welcome to CS/CoE0447!
- See separate “Course Outline”
- Course web page:
 - http://www.cs.pitt.edu/~cho/cs0447
- Instructor:
 - Dr. Sangyeun Cho (cho@cs.pitt.edu, 383-7018)
 - Office hours: M/Th 2pm ~ 4pm, @5407 SENSQ
- TA:
 - Kiyeon Lee (lee@cs.pitt.edu)
 - Office hours: M 4pm ~ 6pm, W 2pm ~ 3pm @5802 SENSQ
Course information

- Student evaluation
 - 11 lab. assignments (LA): 110 points total out of 300
 - 4 homework assignments (HA): 60 points total
 - 3 programming assignments (PA): 60 points total
 - 2 mid-term exams: 40 points total
 - 1 final exam: 30 points
 - GRAND TOTAL = 300 (the maximum point you can get)

Final grade

- Based on your obtained points

- “The” table

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>280 – 300</td>
<td>A</td>
<td>270 – 279</td>
</tr>
<tr>
<td>B+</td>
<td>250 – 259</td>
<td>B</td>
<td>240 – 249</td>
</tr>
<tr>
<td>C+</td>
<td>220 – 229</td>
<td>C</td>
<td>210 – 219</td>
</tr>
<tr>
<td>D+</td>
<td>190 – 199</td>
<td>D</td>
<td>180 – 189</td>
</tr>
<tr>
<td>A-</td>
<td>260 – 269</td>
<td>B-</td>
<td>230 – 239</td>
</tr>
<tr>
<td>C-</td>
<td>200 – 209</td>
<td>D-</td>
<td>1/0 – 1/9</td>
</tr>
</tbody>
</table>

- There is no curve
Course policies

- Exams
 - Closed book; calculators are OK
 - No make-up exam will be given unless there is a valid and approved excuse (in advance)
 - Result of cheating
 - 1st time: 0 points
 - 2nd time: automatic F grade

- Labs.
 - You must come to the labs (attendance accounts for 5 points out of 10 per lab)
 - You will be given a lab assignment each week
 - Each assignment can be done during the lab; submission deadline is the next lab meeting in a week
 - You will collaborate with a partner during the lab; however, each will submit the completed work individually

- Homework assignment (HA) and programming assignments (PA)
 - Assignments must be done alone
 - Assignments done in collaboration, if detected, will be given “0” points
 - Late submissions are not accepted

Important dates

- 9/5: ADD/DROP deadline
- 9/16: mid-term exam #1 (preparatory mock exam 9/11)
- 10/21: mid-term exam #2 (mock exam 10/16)
- 10/14: no classes due to Fall Break
- 11/25,27: no class due to Thanksgiving
- 12/10: Final exam (mock exam 12/2)
Computer systems

- Why do we call a computer a computer?
- What makes a computer a computer?

- “Desktop computers”
 - Examples include PC, Mac, …
 - Notebooks

Desktop computers
Computer systems

- Why do we call a computer a computer?
- What makes a computer a computer?

- “Desktop computers”
 - Examples include PC, Mac, …
 - Notebooks

- “Servers”
 - Web servers
 - Supercomputers

Servers
Computer systems

- Why do we call a computer a computer?
- What makes a computer a computer?

- “Desktop computers”
 - Examples include PC, Mac, …
 - Notebooks
- “Servers”
 - Web servers
 - Supercomputers
- “Embedded computers”
 - Hidden inside something not computer
 - Applications that run on these computers are specific

Embedded computers
Common factors

- There may be different forms of “computation”
 - Example: digital TV tuner that converts a compressed digital motion picture format into something that we can view

- We are interested in a **programmable computing machine** or a **processor**
 - Desktop computers
 - Servers
 - Embedded computers

- What are the common factors that make a computer a computer?

Five classic components

I am like a control tower

I am like a pack of file folders

I am like a conveyor belt + service stations

I exchange information with outside world

We study this part in this course!

Study this part in CS1541!
In CS/CoE0447

- We study
 - Computer architecture
 - MIPS as the example architecture
 - Basic concepts of system software such as assembler, linker, compiler
 - Basic computer arithmetic
 - Binary numbers
 - Operations (add, sub, …)
 - Basic logic design
 - Basic processor performance analysis
 - Processor organization
 - Datapath
 - Control

- We do
 - Assembly language programming (using MARS simulator)
 - MARS (written by a Pitt graduate!) http://www.cs.missouristate.edu/MARS/
Computer architecture?

- It’s not about doing “architecture” with a computer

- It’s about designing a computer system (esp. hardware)

We are interested in principles in designing computer hardware in this course and programming it at the lowest level

- Computer systems
 - Underlying hardware
 - Software running on it

- Computer architecture
 - The hardware/software interface seen by the user (as a programmer)
 - Instruction set architecture (ISA)

- Processor microarchitecture
 - Implementation of a given architecture
 - May or may not be visible to the user
Layers or views

- Our view of a computer system in this course is centered around the interface between the lowest level in software and the hardware.

- We will talk a lot about assembly or machine instructions.

- It’s like learning a whole new language!